Nuprl Lemma : rel_inverse_star
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (x R^*^-1 y 
⇐⇒ x (R^-1^*) y)
Proof
Definitions occuring in Statement : 
rel_inverse: R^-1
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
infix_ap: x f y
, 
rev_implies: P 
⇐ Q
, 
rel_star: R^*
, 
rel_inverse: R^-1
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
rel_inverse_wf, 
rel_star_wf, 
rel_exp_wf, 
rel_inverse_exp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality, 
sqequalRule, 
productElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (x  rel\_star(T;  R)\^{}-1  y  \mLeftarrow{}{}\mRightarrow{}  x  rel\_star(T;  R\^{}-1)  y)
Date html generated:
2019_06_20-PM-00_30_55
Last ObjectModification:
2018_09_26-PM-00_41_50
Theory : relations
Home
Index