Nuprl Lemma : rel_inverse_exp

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀n:ℕ. ∀x,y:T.  (x R^n^-1 ⇐⇒ R^-1^n y)


Proof




Definitions occuring in Statement :  rel_inverse: R^-1 rel_exp: R^n nat: uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s] infix_ap: y rel_inverse: R^-1 rel_exp: R^n eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt guard: {T} exists: x:A. B[x] bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T)
Lemmas referenced :  all_wf iff_wf infix_ap_wf rel_inverse_wf rel_exp_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf set_wf less_than_wf primrec-wf2 nat_wf equal_wf le_weakening2 eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf less_than_transitivity1 le_weakening less_than_irreflexivity bnot_wf not_wf exists_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot subtype_base_sq rel_exp_add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality because_Cache instantiate universeEquality dependent_set_memberEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality functionExtensionality functionEquality equalitySymmetry independent_pairEquality axiomEquality baseApply closedConclusion baseClosed equalityTransitivity productEquality equalityElimination impliesFunctionality dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}n:\mBbbN{}.  \mforall{}x,y:T.    (x  rel\_exp(T;  R;  n)\^{}-1  y  \mLeftarrow{}{}\mRightarrow{}  x  rel\_exp(T;  R\^{}-1;  n)  y)



Date html generated: 2017_04_14-AM-07_38_45
Last ObjectModification: 2017_02_27-PM-03_10_32

Theory : relations


Home Index