Nuprl Lemma : rel_star_trans

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y,z:T.  ((x y)  (y (R^*) z)  (x (R^*) z))


Proof




Definitions occuring in Statement :  rel_star: R^* uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: infix_ap: y
Lemmas referenced :  rel_star_transitivity rel_rel_star rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination dependent_functionElimination hypothesis applyEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y,z:T.    ((x  R  y)  {}\mRightarrow{}  (y  rel\_star(T;  R)  z)  {}\mRightarrow{}  (x  rel\_star(T;  R)  z))



Date html generated: 2019_06_20-PM-00_30_52
Last ObjectModification: 2018_09_26-PM-00_43_06

Theory : relations


Home Index