Nuprl Lemma : restriction-to-field
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  ((∀x,y:T.  ((R x y) 
⇒ ((P x) ∧ (P y)))) 
⇒ (∀x,y:T.  (R|P x y 
⇐⇒ R x y)))
Proof
Definitions occuring in Statement : 
rel-restriction: R|P
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel-restriction: R|P
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
and_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    ((R  x  y)  {}\mRightarrow{}  ((P  x)  \mwedge{}  (P  y))))  {}\mRightarrow{}  (\mforall{}x,y:T.    (R|P  x  y  \mLeftarrow{}{}\mRightarrow{}  R  x  y)))
Date html generated:
2016_05_14-AM-06_06_08
Last ObjectModification:
2015_12_26-AM-11_32_35
Theory : relations
Home
Index