Nuprl Lemma : symmetric_rel_or
∀[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (Sym(T;x,y.x R1 y) 
⇒ Sym(T;x,y.x R2 y) 
⇒ Sym(T;x,y.x (R1 ∨ R2) y))
Proof
Definitions occuring in Statement : 
rel_or: R1 ∨ R2
, 
sym: Sym(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rel_or: R1 ∨ R2
, 
sym: Sym(T;x,y.E[x; y])
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
or_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation, 
applyEquality, 
hypothesisEquality, 
inrFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Sym(T;x,y.x  R1  y)  {}\mRightarrow{}  Sym(T;x,y.x  R2  y)  {}\mRightarrow{}  Sym(T;x,y.x  (R1  \mvee{}  R2)  y))
Date html generated:
2019_06_20-PM-00_31_09
Last ObjectModification:
2018_09_26-PM-00_44_10
Theory : relations
Home
Index