Nuprl Lemma : symmetric_rel_or

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (Sym(T;x,y.x R1 y)  Sym(T;x,y.x R2 y)  Sym(T;x,y.x (R1 ∨ R2) y))


Proof




Definitions occuring in Statement :  rel_or: R1 ∨ R2 sym: Sym(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_or: R1 ∨ R2 sym: Sym(T;x,y.E[x; y]) infix_ap: y uall: [x:A]. B[x] implies:  Q all: x:A. B[x] or: P ∨ Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  or_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution unionElimination thin inlFormation applyEquality hypothesisEquality inrFormation cut introduction extract_by_obid isectElimination hypothesis lambdaEquality functionEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Sym(T;x,y.x  R1  y)  {}\mRightarrow{}  Sym(T;x,y.x  R2  y)  {}\mRightarrow{}  Sym(T;x,y.x  (R1  \mvee{}  R2)  y))



Date html generated: 2019_06_20-PM-00_31_09
Last ObjectModification: 2018_09_26-PM-00_44_10

Theory : relations


Home Index