Nuprl Lemma : AF-uniform-induction4-ext
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
  ∀Q:T ⟶ ℙ. uniform-TI(T;x,y.R[x;y];t.Q[t]) 
  supposing ∃R':T ⟶ T ⟶ ℙ. (AFx,y:T.R'[x;y] ∧ (∀x,y:T.  (R+[x;y] 
⇒ (¬R'[x;y]))))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
almost-full: AFx,y:T.R[x; y]
, 
uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
AF-uniform-induction4, 
rel_plus-uniform-TI, 
AF-uniform-induction3, 
AF-uniform-induction2, 
AF-uniform-induction
Lemmas referenced : 
AF-uniform-induction4, 
rel_plus-uniform-TI, 
AF-uniform-induction3, 
AF-uniform-induction2, 
AF-uniform-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  uniform-TI(T;x,y.R[x;y];t.Q[t]) 
    supposing  \mexists{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (AFx,y:T.R'[x;y]  \mwedge{}  (\mforall{}x,y:T.    (R\msupplus{}[x;y]  {}\mRightarrow{}  (\mneg{}R'[x;y]))))
Date html generated:
2018_05_21-PM-00_52_15
Last ObjectModification:
2018_05_19-AM-06_40_45
Theory : relations2
Home
Index