Nuprl Lemma : AF-uniform-induction4-ext

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  ∀Q:T ⟶ ℙuniform-TI(T;x,y.R[x;y];t.Q[t]) 
  supposing ∃R':T ⟶ T ⟶ ℙ(AFx,y:T.R'[x;y] ∧ (∀x,y:T.  (R+[x;y]  R'[x;y]))))


Proof




Definitions occuring in Statement :  rel_plus: R+ almost-full: AFx,y:T.R[x; y] uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T AF-uniform-induction4 rel_plus-uniform-TI AF-uniform-induction3 AF-uniform-induction2 AF-uniform-induction
Lemmas referenced :  AF-uniform-induction4 rel_plus-uniform-TI AF-uniform-induction3 AF-uniform-induction2 AF-uniform-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  uniform-TI(T;x,y.R[x;y];t.Q[t]) 
    supposing  \mexists{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (AFx,y:T.R'[x;y]  \mwedge{}  (\mforall{}x,y:T.    (R\msupplus{}[x;y]  {}\mRightarrow{}  (\mneg{}R'[x;y]))))



Date html generated: 2018_05_21-PM-00_52_15
Last ObjectModification: 2018_05_19-AM-06_40_45

Theory : relations2


Home Index