Nuprl Lemma : AF-uniform-induction4
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
  ∀Q:T ⟶ ℙ. uniform-TI(T;x,y.R[x;y];t.Q[t]) 
  supposing ∃R':T ⟶ T ⟶ ℙ. (AFx,y:T.R'[x;y] ∧ (∀x,y:T.  (R+[x;y] 
⇒ (¬R'[x;y]))))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
almost-full: AFx,y:T.R[x; y]
, 
uniform-TI: uniform-TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
rel_plus-uniform-TI, 
AF-uniform-induction3, 
rel_plus_wf, 
rel_plus_trans, 
exists_wf, 
almost-full_wf, 
all_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
independent_functionElimination, 
isectElimination, 
because_Cache, 
hypothesis, 
universeEquality, 
independent_isectElimination, 
functionEquality, 
instantiate, 
productEquality, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
voidElimination, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
levelHypothesis, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    \mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  uniform-TI(T;x,y.R[x;y];t.Q[t]) 
    supposing  \mexists{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (AFx,y:T.R'[x;y]  \mwedge{}  (\mforall{}x,y:T.    (R\msupplus{}[x;y]  {}\mRightarrow{}  (\mneg{}R'[x;y]))))
Date html generated:
2016_10_21-AM-10_50_26
Last ObjectModification:
2016_07_12-AM-05_54_33
Theory : relations2
Home
Index