Nuprl Lemma : rel_plus_trans
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  Trans(T;x,y.x R+ y)
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
rel_plus_transitivity, 
rel_plus_wf, 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
Error :universeIsType, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    Trans(T;x,y.x  R\msupplus{}  y)
Date html generated:
2019_06_20-PM-02_01_47
Last ObjectModification:
2019_02_26-AM-11_36_19
Theory : relations2
Home
Index