Nuprl Lemma : rel_plus_trans

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  Trans(T;x,y.x R+ y)


Proof




Definitions occuring in Statement :  rel_plus: R+ trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q member: t ∈ T infix_ap: y subtype_rel: A ⊆B prop:
Lemmas referenced :  rel_plus_transitivity rel_plus_wf subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis Error :universeIsType,  applyEquality functionExtensionality sqequalRule instantiate functionEquality cumulativity universeEquality because_Cache Error :functionIsType

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    Trans(T;x,y.x  R\msupplus{}  y)



Date html generated: 2019_06_20-PM-02_01_47
Last ObjectModification: 2019_02_26-AM-11_36_19

Theory : relations2


Home Index