Nuprl Lemma : rel_plus_transitivity
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[x,y,z:T].  ((R+ x y) ⇒ (R+ y z) ⇒ (R+ x z))
Proof
Definitions occuring in Statement : 
rel_plus: R+, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rel_plus: R+, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
infix_ap: x f y, 
nat: ℕ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
rel_exp_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
subtype_rel_self, 
rel_plus_wf, 
istype-universe, 
rel_exp_add, 
nat_plus_subtype_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
cut, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
applyEquality, 
instantiate, 
because_Cache, 
functionExtensionality, 
functionEquality, 
cumulativity, 
universeEquality, 
Error :inhabitedIsType, 
Error :functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x,y,z:T].    ((R\msupplus{}  x  y)  {}\mRightarrow{}  (R\msupplus{}  y  z)  {}\mRightarrow{}  (R\msupplus{}  x  z))
Date html generated:
2019_06_20-PM-02_01_46
Last ObjectModification:
2019_02_26-AM-11_34_24
Theory : relations2
Home
Index