Nuprl Lemma : binrel_eqv_transitivity
∀[T:Type]. ∀[Q,R,S:T ⟶ T ⟶ ℙ].  ((Q <≡>{T} R) 
⇒ (R <≡>{T} S) 
⇒ (Q <≡>{T} S))
Proof
Definitions occuring in Statement : 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[Q,R,S:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((Q  <\mequiv{}>\{T\}  R)  {}\mRightarrow{}  (R  <\mequiv{}>\{T\}  S)  {}\mRightarrow{}  (Q  <\mequiv{}>\{T\}  S))
Date html generated:
2016_05_14-PM-03_54_40
Last ObjectModification:
2015_12_26-PM-06_56_07
Theory : relations2
Home
Index