Nuprl Lemma : binrel_le_wf
∀[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ].  (E ≡>{T} E' ∈ ℙ)
Proof
Definitions occuring in Statement : 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[E,E':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (E  \mequiv{}>\{T\}  E'  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_54_50
Last ObjectModification:
2015_12_26-PM-06_55_58
Theory : relations2
Home
Index