Nuprl Lemma : rel_plus_field

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].
  ((∀x,y:T.  ((R y)  ((P x) ∧ (P y))))  (∀x,y:T.  ((R+ y)  ((P x) ∧ (P y)))))


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B prop: and: P ∧ Q rel_implies: R1 => R2 infix_ap: y trans: Trans(T;x,y.E[x; y]) cand: c∧ B
Lemmas referenced :  istype-universe subtype_rel_self rel_plus_minimal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  applyEquality instantiate universeEquality Error :productIsType,  because_Cache Error :lambdaEquality_alt,  productEquality independent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    ((R  x  y)  {}\mRightarrow{}  ((P  x)  \mwedge{}  (P  y))))  {}\mRightarrow{}  (\mforall{}x,y:T.    ((R\msupplus{}  x  y)  {}\mRightarrow{}  ((P  x)  \mwedge{}  (P  y)))))



Date html generated: 2019_06_20-PM-02_02_27
Last ObjectModification: 2018_10_06-AM-11_23_50

Theory : relations2


Home Index