Nuprl Lemma : rel_plus_minimal
∀[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  (R => Q 
⇒ Trans(T;x,y.x Q y) 
⇒ R+ => Q)
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
rel_implies: R1 => R2
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
rel_implies: R1 => R2
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
Lemmas referenced : 
rel_plus_closure, 
rel_plus_wf, 
trans_wf, 
rel_implies_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  Trans(T;x,y.x  Q  y)  {}\mRightarrow{}  R\msupplus{}  =>  Q)
Date html generated:
2016_05_14-PM-03_55_13
Last ObjectModification:
2015_12_26-PM-06_55_43
Theory : relations2
Home
Index