Nuprl Lemma : rel_plus_minimal

[T:Type]. ∀[R,Q:T ⟶ T ⟶ ℙ].  (R =>  Trans(T;x,y.x y)  R+ => Q)


Proof




Definitions occuring in Statement :  rel_plus: R+ rel_implies: R1 => R2 trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q so_apply: x[s1;s2] infix_ap: y all: x:A. B[x] prop: rel_implies: R1 => R2 so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  rel_plus_closure rel_plus_wf trans_wf rel_implies_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination sqequalRule applyEquality because_Cache lambdaEquality functionEquality cumulativity universeEquality dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,Q:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  Trans(T;x,y.x  Q  y)  {}\mRightarrow{}  R\msupplus{}  =>  Q)



Date html generated: 2016_05_14-PM-03_55_13
Last ObjectModification: 2015_12_26-PM-06_55_43

Theory : relations2


Home Index