Nuprl Lemma : resigned_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type]. ∀[sg:Spread(Pos;a.Mv[a])?].  (resigned(sg) ∈ ℙ)


Proof




Definitions occuring in Statement :  resigned: resigned(x) Spread: Spread(Pos;a.Mv[a]) uall: [x:A]. B[x] prop: so_apply: x[s] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T resigned: resigned(x) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  assert_wf isr_wf Spread_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry unionEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].  \mforall{}[sg:Spread(Pos;a.Mv[a])?].    (resigned(sg)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_56_42
Last ObjectModification: 2015_12_26-PM-05_48_13

Theory : spread


Home Index