Nuprl Lemma : set-is-image

[A:Type]. ∀[B:A ⟶ Type].  {a:A| B[a]}  ≡ Image((a:A × B[a]),(λp.(fst(p))))


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) image-type: Image(T,f) set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q ext-eq: A ≡ B member: t ∈ T uall: [x:A]. B[x] pi1: fst(t)
Lemmas referenced :  image-type_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality cumulativity functionEquality axiomEquality independent_pairEquality productElimination sqequalRule hypothesis baseClosed productEquality thin isectElimination sqequalHypSubstitution lemma_by_obid applyEquality hypothesisEquality setEquality lambdaEquality independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename setElimination imageMemberEquality Error :dependent_pairEquality_alt,  Error :universeIsType,  imageElimination dependent_set_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \{a:A|  B[a]\}    \mequiv{}  Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(fst(p))))



Date html generated: 2019_06_20-AM-11_19_32
Last ObjectModification: 2018_10_16-PM-02_50_01

Theory : subtype_0


Home Index