Nuprl Lemma : set-is-image
∀[A:Type]. ∀[B:A ⟶ Type].  {a:A| B[a]}  ≡ Image((a:A × B[a]),(λp.(fst(p))))
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
image-type: Image(T,f)
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
Lemmas referenced : 
image-type_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
sqequalRule, 
hypothesis, 
baseClosed, 
productEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
applyEquality, 
hypothesisEquality, 
setEquality, 
lambdaEquality, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename, 
setElimination, 
imageMemberEquality, 
Error :dependent_pairEquality_alt, 
Error :universeIsType, 
imageElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \{a:A|  B[a]\}    \mequiv{}  Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(fst(p))))
Date html generated:
2019_06_20-AM-11_19_32
Last ObjectModification:
2018_10_16-PM-02_50_01
Theory : subtype_0
Home
Index