Nuprl Lemma : pair-mono

A:Type. ∀B:A ⟶ Type.  ((mono(A) ∧ (∀a:A. mono(B[a])))  mono(a:A × B[a]))


Proof




Definitions occuring in Statement :  mono: mono(T) so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q mono: mono(T) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: guard: {T}
Lemmas referenced :  is-above-pair is-above_wf base_wf and_wf mono_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality dependent_functionElimination independent_functionElimination hypothesis dependent_pairEquality productEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.    ((mono(A)  \mwedge{}  (\mforall{}a:A.  mono(B[a])))  {}\mRightarrow{}  mono(a:A  \mtimes{}  B[a]))



Date html generated: 2016_05_13-PM-04_13_42
Last ObjectModification: 2015_12_26-AM-11_10_26

Theory : subtype_1


Home Index