Nuprl Lemma : prod-image-is-image

[A:Type]. ∀[f:Base]. ∀[B:Image(A,f) ⟶ Type]. ∀[g:Base].
  y:Image(A,f) × Image(B[y],g) ≡ Image((z:A × B[f z]),(λp.let a,b 
                                                          in <a, b>))


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uall: [x:A]. B[x] so_apply: x[s] image-type: Image(T,f) apply: a lambda: λx.A[x] function: x:A ⟶ B[x] spread: spread def pair: <a, b> product: x:A × B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  base_wf image-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality productElimination thin productEquality lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality cumulativity imageMemberEquality sqequalRule baseApply closedConclusion baseClosed independent_pairEquality axiomEquality isect_memberEquality because_Cache functionEquality universeEquality imageElimination rename dependent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].  \mforall{}[B:Image(A,f)  {}\mrightarrow{}  Type].  \mforall{}[g:Base].
    y:Image(A,f)  \mtimes{}  Image(B[y],g)  \mequiv{}  Image((z:A  \mtimes{}  B[f  z]),(\mlambda{}p.let  a,b  =  p 
                                                                                                                    in  <f  a,  g  b>))



Date html generated: 2016_05_13-PM-04_14_08
Last ObjectModification: 2016_01_14-PM-07_28_47

Theory : subtype_1


Home Index