Nuprl Lemma : prod-image-is-image
∀[A:Type]. ∀[f:Base]. ∀[B:Image(A,f) ⟶ Type]. ∀[g:Base].
  y:Image(A,f) × Image(B[y],g) ≡ Image((z:A × B[f z]),(λp.let a,b = p 
                                                          in <f a, g b>))
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
image-type: Image(T,f)
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
pair: <a, b>
, 
product: x:A × B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
base_wf, 
image-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
productElimination, 
thin, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
cumulativity, 
imageMemberEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
imageElimination, 
rename, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:Base].  \mforall{}[B:Image(A,f)  {}\mrightarrow{}  Type].  \mforall{}[g:Base].
    y:Image(A,f)  \mtimes{}  Image(B[y],g)  \mequiv{}  Image((z:A  \mtimes{}  B[f  z]),(\mlambda{}p.let  a,b  =  p 
                                                                                                                    in  <f  a,  g  b>))
Date html generated:
2016_05_13-PM-04_14_08
Last ObjectModification:
2016_01_14-PM-07_28_47
Theory : subtype_1
Home
Index