Nuprl Lemma : set-axiom-of-choice_wf

Set-AC ∈ ℙ'


Proof




Definitions occuring in Statement :  set-axiom-of-choice: Set-AC prop: member: t ∈ T
Definitions unfolded in proof :  set-axiom-of-choice: Set-AC member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B so_apply: x[s] guard: {T} uimplies: supposing a
Lemmas referenced :  all_wf exists_wf ext-eq_wf equal_wf ext-eq_inversion subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin universeEquality lambdaEquality functionEquality cumulativity hypothesisEquality applyEquality functionExtensionality because_Cache hypothesis independent_isectElimination

Latex:
Set-AC  \mmember{}  \mBbbP{}'



Date html generated: 2017_04_14-AM-07_37_38
Last ObjectModification: 2017_02_27-PM-03_09_52

Theory : subtype_1


Home Index