Nuprl Lemma : sq_stable__t-sqle

[T:Type]. ∀[a,b:T].  SqStable(t-sqle(T;a;b))


Proof




Definitions occuring in Statement :  t-sqle: t-sqle(T;a;b) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T t-sqle: t-sqle(T;a;b) subtype_rel: A ⊆B so_lambda: λ2x.t[x] per-class: per-class(T;a) so_apply: x[s] sq_stable: SqStable(P) implies:  Q squash: T prop:
Lemmas referenced :  t-sqle_wf squash_wf sqle_wf_base base_wf subtype_rel_b-union-right per-class_wf exists_wf sq_stable__squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality applyEquality hypothesis because_Cache sqequalRule lambdaEquality setElimination rename dependent_functionElimination imageElimination imageMemberEquality baseClosed isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].    SqStable(t-sqle(T;a;b))



Date html generated: 2016_05_13-PM-04_12_48
Last ObjectModification: 2016_01_14-PM-07_29_24

Theory : subtype_1


Home Index