Nuprl Lemma : t-sqle_wf
∀[T:Type]. ∀[a,b:T].  (t-sqle(T;a;b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
t-sqle: t-sqle(T;a;b)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
t-sqle: t-sqle(T;a;b)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
per-class: per-class(T;a)
, 
so_apply: x[s]
Lemmas referenced : 
squash_wf, 
exists_wf, 
per-class_wf, 
subtype_rel_b-union-right, 
base_wf, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].    (t-sqle(T;a;b)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-04_12_46
Last ObjectModification:
2015_12_26-AM-11_11_55
Theory : subtype_1
Home
Index