Nuprl Lemma : squash-exists-is-union-squash

[T:Type]. ∀[P:T ⟶ ℙ].  ↓∃x:T. P[x] ≡ ⋃x:T.(↓P[x])


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B tunion: x:A.B[x] uall: [x:A]. B[x] prop: so_apply: x[s] exists: x:A. B[x] squash: T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: squash: T tunion: x:A.B[x] pi2: snd(t)
Lemmas referenced :  tunion_wf exists_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality hypothesis productElimination independent_pairEquality axiomEquality functionEquality cumulativity universeEquality isect_memberEquality because_Cache imageElimination imageMemberEquality dependent_pairEquality baseClosed equalityTransitivity equalitySymmetry rename

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mdownarrow{}\mexists{}x:T.  P[x]  \mequiv{}  \mcup{}x:T.(\mdownarrow{}P[x])



Date html generated: 2016_05_13-PM-04_13_59
Last ObjectModification: 2016_01_14-PM-07_29_10

Theory : subtype_1


Home Index