Nuprl Lemma : strong-subtype-eq4
∀[A,B:Type]. ∀[b:B]. ∀[a:A].  {b = a ∈ B supposing b = a ∈ A} supposing strong-subtype(B;A)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
Lemmas referenced : 
equal_wf, 
strong-subtype_wf, 
strong-subtype-eq2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
productElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].  \mforall{}[a:A].    \{b  =  a  supposing  b  =  a\}  supposing  strong-subtype(B;A)
Date html generated:
2016_05_13-PM-04_11_37
Last ObjectModification:
2015_12_26-AM-11_21_21
Theory : subtype_1
Home
Index