Nuprl Lemma : strong-subtype-equal

[A,B:Type].  strong-subtype(A;B) supposing B ∈ Type


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf strong-subtype_witness strong-subtype-self iff_weakening_equal true_wf squash_wf strong-subtype_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache instantiate isect_memberEquality

Latex:
\mforall{}[A,B:Type].    strong-subtype(A;B)  supposing  A  =  B



Date html generated: 2016_05_13-PM-04_11_00
Last ObjectModification: 2016_01_14-PM-07_29_46

Theory : subtype_1


Home Index