Nuprl Lemma : subtype-iff-id-mem-fun

[A,B:Type].  uiff(A ⊆B;λx.x ∈ A ⟶ B)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  equal-wf-base subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaEquality hypothesisEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin functionEquality baseClosed because_Cache productElimination independent_pairEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].    uiff(A  \msubseteq{}r  B;\mlambda{}x.x  \mmember{}  A  {}\mrightarrow{}  B)



Date html generated: 2016_05_13-PM-04_14_14
Last ObjectModification: 2016_01_14-PM-07_28_45

Theory : subtype_1


Home Index