Nuprl Lemma : subtype_rel_per-class

[A,B:Type].  ∀[a:A]. (per-class(A;a) ⊆per-class(B;a)) supposing A ⊆B


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B per-class: per-class(T;a) guard: {T} implies:  Q prop:
Lemmas referenced :  equal_functionality_wrt_subtype_rel2 equal-wf-base-T per-class_wf subtype_rel_b-union-right base_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality hypothesisEquality hypothesis lemma_by_obid isectElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination applyEquality sqequalRule cumulativity because_Cache axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[a:A].  (per-class(A;a)  \msubseteq{}r  per-class(B;a))  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_13-PM-04_12_36
Last ObjectModification: 2015_12_26-AM-11_12_11

Theory : subtype_1


Home Index