Nuprl Lemma : subtype_rel_per-class
∀[A,B:Type].  ∀[a:A]. (per-class(A;a) ⊆r per-class(B;a)) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
per-class: per-class(T;a)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
equal_functionality_wrt_subtype_rel2, 
equal-wf-base-T, 
per-class_wf, 
subtype_rel_b-union-right, 
base_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
cumulativity, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[a:A].  (per-class(A;a)  \msubseteq{}r  per-class(B;a))  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_13-PM-04_12_36
Last ObjectModification:
2015_12_26-AM-11_12_11
Theory : subtype_1
Home
Index