Nuprl Lemma : top-subtype-function
∀[A,B:Type].  Top ⊆r (A ⟶ B) supposing ¬A
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
top_wf, 
not_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
axiomEquality, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
lambdaEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[A,B:Type].    Top  \msubseteq{}r  (A  {}\mrightarrow{}  B)  supposing  \mneg{}A
Date html generated:
2019_06_20-PM-00_27_47
Last ObjectModification:
2018_08_02-AM-11_27_46
Theory : subtype_1
Home
Index