Nuprl Lemma : top-subtype-function

[A,B:Type].  Top ⊆(A ⟶ B) supposing ¬A


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: subtype_rel: A ⊆B uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] not: ¬A implies:  Q false: False
Lemmas referenced :  top_wf not_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity because_Cache isect_memberEquality hypothesisEquality thin isectElimination sqequalHypSubstitution axiomEquality sqequalRule hypothesis lemma_by_obid lambdaEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality independent_functionElimination voidElimination

Latex:
\mforall{}[A,B:Type].    Top  \msubseteq{}r  (A  {}\mrightarrow{}  B)  supposing  \mneg{}A



Date html generated: 2019_06_20-PM-00_27_47
Last ObjectModification: 2018_08_02-AM-11_27_46

Theory : subtype_1


Home Index