Nuprl Lemma : type-monotone-union-continuous
∀[F:Type ⟶ Type]. union-continuous{i:l}(T.F[T]) supposing Monotone(T.F[T])
Proof
Definitions occuring in Statement : 
union-continuous: union-continuous{i:l}(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
union-continuous: union-continuous{i:l}(T.F[T])
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
type-monotone: Monotone(T.F[T])
Lemmas referenced : 
type-monotone_wf, 
tunion_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
productElimination, 
independent_isectElimination, 
imageMemberEquality, 
dependent_pairEquality, 
baseClosed
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  union-continuous\{i:l\}(T.F[T])  supposing  Monotone(T.F[T])
Date html generated:
2016_05_13-PM-04_10_20
Last ObjectModification:
2016_01_14-PM-07_29_47
Theory : subtype_1
Home
Index