Nuprl Lemma : inr-one-one'

[A,B:Type]. ∀[x,y:B].  y ∈ supposing (inr (inr ) ∈ (A B)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] inr: inr  union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution sqequalRule applyLambdaEquality unionElimination thin hypothesisEquality hypothesis equalityIstype unionIsType universeIsType inrEquality_alt isect_memberEquality_alt isectElimination axiomEquality isectIsTypeImplies inhabitedIsType instantiate extract_by_obid universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:B].    x  =  y  supposing  (inr  x  )  =  (inr  y  )



Date html generated: 2020_05_19-PM-09_35_13
Last ObjectModification: 2019_12_05-PM-02_56_24

Theory : union


Home Index