Nuprl Lemma : inr-one-one'
∀[A,B:Type]. ∀[x,y:B].  x = y ∈ B supposing (inr x ) = (inr y ) ∈ (A + B)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
applyLambdaEquality, 
unionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityIstype, 
unionIsType, 
universeIsType, 
inrEquality_alt, 
isect_memberEquality_alt, 
isectElimination, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
extract_by_obid, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:B].    x  =  y  supposing  (inr  x  )  =  (inr  y  )
Date html generated:
2020_05_19-PM-09_35_13
Last ObjectModification:
2019_12_05-PM-02_56_24
Theory : union
Home
Index