Nuprl Lemma : inv_image_ind_tp

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. ∀[S:Type].  ∀f:S ⟶ T. (WellFnd{i}(T;x,y.r[x;y])  WellFnd{i}(S;x,y.r[f x;f y]))


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  wellfounded_wf istype-universe all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  hypothesis Error :functionIsType,  universeEquality because_Cache independent_functionElimination dependent_functionElimination functionEquality equalitySymmetry hyp_replacement applyLambdaEquality Error :equalityIsType1

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:Type].
    \mforall{}f:S  {}\mrightarrow{}  T.  (WellFnd\{i\}(T;x,y.r[x;y])  {}\mRightarrow{}  WellFnd\{i\}(S;x,y.r[f  x;f  y]))



Date html generated: 2019_06_20-AM-11_19_19
Last ObjectModification: 2018_10_06-AM-09_00_27

Theory : well_fnd


Home Index