Nuprl Lemma : pair-lex_wf

[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].  (pair-lex(A;Ra;Rb) ∈ (A × B) ⟶ (A × B) ⟶ ℙ)


Proof




Definitions occuring in Statement :  pair-lex: pair-lex(A;Ra;Rb) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pair-lex: pair-lex(A;Ra;Rb) pi1: fst(t) prop: and: P ∧ Q pi2: snd(t) subtype_rel: A ⊆B
Lemmas referenced :  or_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity productElimination productEquality because_Cache hypothesis universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    (pair-lex(A;Ra;Rb)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_13_57
Last ObjectModification: 2017_02_27-PM-02_49_45

Theory : well_fnd


Home Index