Nuprl Lemma : pair-lex_wf
∀[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].  (pair-lex(A;Ra;Rb) ∈ (A × B) ⟶ (A × B) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
pair-lex: pair-lex(A;Ra;Rb)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pair-lex: pair-lex(A;Ra;Rb)
, 
pi1: fst(t)
, 
prop: ℙ
, 
and: P ∧ Q
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
or_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
productElimination, 
productEquality, 
because_Cache, 
hypothesis, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].    (pair-lex(A;Ra;Rb)  \mmember{}  (A  \mtimes{}  B)  {}\mrightarrow{}  (A  \mtimes{}  B)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2017_04_14-AM-07_13_57
Last ObjectModification:
2017_02_27-PM-02_49_45
Theory : well_fnd
Home
Index