Nuprl Lemma : uwellfounded_wf

[A:Type]. ∀[R:A ⟶ A ⟶ ℙ].  (uWellFnd(A;x,y.R[x;y]) ∈ ℙ')


Proof




Definitions occuring in Statement :  uwellfounded: uWellFnd(A;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uwellfounded: uWellFnd(A;x,y.R[x; y]) prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality setEquality applyEquality hypothesis setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (uWellFnd(A;x,y.R[x;y])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_13-PM-03_18_12
Last ObjectModification: 2015_12_26-AM-09_06_50

Theory : well_fnd


Home Index