Nuprl Lemma : bag-combine-unit-left-top

[f,a:Top].  (⋃x∈[a].f[x] f[a] {})


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-append: as bs empty-bag: {} cons: [a b] nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T empty-bag: {} bag-append: as bs bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) all: x:A. B[x] top: Top concat: concat(ll)
Lemmas referenced :  map_cons_lemma map_nil_lemma reduce_cons_lemma reduce_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[f,a:Top].    (\mcup{}x\mmember{}[a].f[x]  \msim{}  f[a]  +  \{\})



Date html generated: 2016_05_15-PM-02_28_15
Last ObjectModification: 2015_12_27-AM-09_50_44

Theory : bags


Home Index