Nuprl Lemma : bag-upto_wf

[n:ℤ]. (bag-upto(n) ∈ bag(ℤ))


Proof




Definitions occuring in Statement :  bag-upto: bag-upto(n) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-upto: bag-upto(n) subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-}
Lemmas referenced :  upto_wf list-subtype-bag int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality natural_numberEquality intEquality independent_isectElimination lambdaEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbZ{}].  (bag-upto(n)  \mmember{}  bag(\mBbbZ{}))



Date html generated: 2016_05_15-PM-02_21_57
Last ObjectModification: 2015_12_27-AM-09_55_10

Theory : bags


Home Index