Nuprl Lemma : bag-upto_wf
∀[n:ℤ]. (bag-upto(n) ∈ bag(ℤ))
Proof
Definitions occuring in Statement : 
bag-upto: bag-upto(n)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-upto: bag-upto(n)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
Lemmas referenced : 
upto_wf, 
list-subtype-bag, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbZ{}].  (bag-upto(n)  \mmember{}  bag(\mBbbZ{}))
Date html generated:
2016_05_15-PM-02_21_57
Last ObjectModification:
2015_12_27-AM-09_55_10
Theory : bags
Home
Index