Nuprl Lemma : bag_map_single_lemma
∀x,f:Top.  (bag-map(f;{x}) ~ {f x})
Proof
Definitions occuring in Statement : 
bag-map: bag-map(f;bs)
, 
single-bag: {x}
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
single-bag: {x}
, 
bag-map: bag-map(f;bs)
, 
top: Top
Lemmas referenced : 
top_wf, 
map_cons_lemma, 
map_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x,f:Top.    (bag-map(f;\{x\})  \msim{}  \{f  x\})
Date html generated:
2016_05_15-PM-02_22_04
Last ObjectModification:
2015_12_27-AM-09_55_08
Theory : bags
Home
Index