Nuprl Lemma : bag_map_single_lemma

x,f:Top.  (bag-map(f;{x}) {f x})


Proof




Definitions occuring in Statement :  bag-map: bag-map(f;bs) single-bag: {x} top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T single-bag: {x} bag-map: bag-map(f;bs) top: Top
Lemmas referenced :  top_wf map_cons_lemma map_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x,f:Top.    (bag-map(f;\{x\})  \msim{}  \{f  x\})



Date html generated: 2016_05_15-PM-02_22_04
Last ObjectModification: 2015_12_27-AM-09_55_08

Theory : bags


Home Index