Nuprl Lemma : callbyvalueall-single-bag-combine3
∀[F,G,a,b:Top].
  (let x ⟵ [a]
   in let z ⟵ b
      in let y ⟵ ⋃v∈x.G[z;v]
         in F[z;y] ~ let x ⟵ a
                     in let z ⟵ b
                        in let y ⟵ G[z;x] @ []
                           in F[z;y])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
callbyvalueall: callbyvalueall, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
so_apply: x[s1;s2]
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
bag-map: bag-map(f;bs)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
lifting-callbyvalueall-pair, 
map_cons_lemma, 
evalall_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
reduce_nil_lemma, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :memTop, 
hypothesis, 
callbyvalueReduce, 
sqleReflexivity, 
dependent_functionElimination, 
axiomSqEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[F,G,a,b:Top].
    (let  x  \mleftarrow{}{}  [a]
      in  let  z  \mleftarrow{}{}  b
            in  let  y  \mleftarrow{}{}  \mcup{}v\mmember{}x.G[z;v]
                  in  F[z;y]  \msim{}  let  x  \mleftarrow{}{}  a
                                          in  let  z  \mleftarrow{}{}  b
                                                in  let  y  \mleftarrow{}{}  G[z;x]  @  []
                                                      in  F[z;y])
Date html generated:
2020_05_20-AM-08_03_45
Last ObjectModification:
2020_01_17-AM-07_51_41
Theory : bags
Home
Index