Nuprl Lemma : squash-bag-member

[T:Type]. ∀[x:T]. ∀[bs:bag(T)].  uiff(↓x ↓∈ bs;x ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] squash: T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bag-member: x ↓∈ bs squash: T prop:
Lemmas referenced :  bag_wf bag-member_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination hypothesis sqequalRule imageMemberEquality hypothesisEquality thin baseClosed lemma_by_obid isectElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    uiff(\mdownarrow{}x  \mdownarrow{}\mmember{}  bs;x  \mdownarrow{}\mmember{}  bs)



Date html generated: 2016_05_15-PM-02_36_32
Last ObjectModification: 2016_01_16-AM-08_51_05

Theory : bags


Home Index