Step
*
2
2
1
1
1
2
2
of Lemma
equipollent-choose
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : {1...}
4. (m + 1) ≤ n
5. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . ((b|n - 1) = {n - 1} ∈ bag(ℕn))
6. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . (b = ({n - 1} + (b|¬n - 1)) ∈ bag(ℕn))
⊢ {x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} ~ UnorderedCombination(m - 1;ℕn - 1)
BY
{ Assert ⌜∀b:{x:bag(ℕn)| n - 1 ↓∈ x} . ((b|¬n - 1) ∈ bag(ℕn - 1))⌝⋅ }
1
.....assertion.....
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : {1...}
4. (m + 1) ≤ n
5. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . ((b|n - 1) = {n - 1} ∈ bag(ℕn))
6. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . (b = ({n - 1} + (b|¬n - 1)) ∈ bag(ℕn))
⊢ ∀b:{x:bag(ℕn)| n - 1 ↓∈ x} . ((b|¬n - 1) ∈ bag(ℕn - 1))
2
1. n : ℕ
2. ∀n:ℕn. ∀m:ℕ. ((m ≤ n)
⇒ UnorderedCombination(m;ℕn) ~ ℕchoose(n;m))
3. m : {1...}
4. (m + 1) ≤ n
5. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . ((b|n - 1) = {n - 1} ∈ bag(ℕn))
6. ∀b:{x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} . (b = ({n - 1} + (b|¬n - 1)) ∈ bag(ℕn))
7. ∀b:{x:bag(ℕn)| n - 1 ↓∈ x} . ((b|¬n - 1) ∈ bag(ℕn - 1))
⊢ {x:UnorderedCombination(m;ℕn)| n - 1 ↓∈ x} ~ UnorderedCombination(m - 1;ℕn - 1)
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}n:\mBbbN{}n. \mforall{}m:\mBbbN{}. ((m \mleq{} n) {}\mRightarrow{} UnorderedCombination(m;\mBbbN{}n) \msim{} \mBbbN{}choose(n;m))
3. m : \{1...\}
4. (m + 1) \mleq{} n
5. \mforall{}b:\{x:UnorderedCombination(m;\mBbbN{}n)| n - 1 \mdownarrow{}\mmember{} x\} . ((b|n - 1) = \{n - 1\})
6. \mforall{}b:\{x:UnorderedCombination(m;\mBbbN{}n)| n - 1 \mdownarrow{}\mmember{} x\} . (b = (\{n - 1\} + (b|\mneg{}n - 1)))
\mvdash{} \{x:UnorderedCombination(m;\mBbbN{}n)| n - 1 \mdownarrow{}\mmember{} x\} \msim{} UnorderedCombination(m - 1;\mBbbN{}n - 1)
By
Latex:
Assert \mkleeneopen{}\mforall{}b:\{x:bag(\mBbbN{}n)| n - 1 \mdownarrow{}\mmember{} x\} . ((b|\mneg{}n - 1) \mmember{} bag(\mBbbN{}n - 1))\mkleeneclose{}\mcdot{}
Home
Index