Nuprl Lemma : fix_wf_bar
∀[A:Type]. ∀[f:bar(A) ⟶ bar(A)]. (fix(f) ∈ bar(A)) supposing value-type(A) ∧ mono(A)
Proof
Definitions occuring in Statement :
bar: bar(T)
,
mono: mono(T)
,
value-type: value-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
member: t ∈ T
,
fix: fix(F)
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
prop: ℙ
Lemmas referenced :
fixpoint-induction,
and_wf,
value-type_wf,
mono_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
isectElimination,
hypothesisEquality,
independent_isectElimination,
hypothesis,
dependent_functionElimination,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[A:Type]. \mforall{}[f:bar(A) {}\mrightarrow{} bar(A)]. (fix(f) \mmember{} bar(A)) supposing value-type(A) \mwedge{} mono(A)
Date html generated:
2016_05_15-PM-10_04_48
Last ObjectModification:
2015_12_27-PM-05_16_43
Theory : bar!type
Home
Index