Nuprl Lemma : has-value_wf-bar

[T:Type]. ∀[a:bar(T)]. ((a)↓ ∈ ℙsupposing value-type(T)


Proof




Definitions occuring in Statement :  bar: bar(T) value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  bar: bar(T) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  value-type_wf partial_wf has-value_wf-partial
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:bar(T)].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(T)



Date html generated: 2016_05_15-PM-10_03_45
Last ObjectModification: 2016_01_05-PM-06_25_41

Theory : bar!type


Home Index