Nuprl Lemma : has-value_wf-bar
∀[T:Type]. ∀[a:bar(T)]. ((a)↓ ∈ ℙ) supposing value-type(T)
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
value-type_wf, 
partial_wf, 
has-value_wf-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:bar(T)].  ((a)\mdownarrow{}  \mmember{}  \mBbbP{})  supposing  value-type(T)
Date html generated:
2016_05_15-PM-10_03_45
Last ObjectModification:
2016_01_05-PM-06_25_41
Theory : bar!type
Home
Index