Nuprl Lemma : strong-subtype-bar
∀[T:Type]. (value-type(T) 
⇒ strong-subtype(T;bar(T)))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
strong-subtype: strong-subtype(A;B)
, 
value-type: value-type(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
Lemmas referenced : 
partial_wf, 
strong-subtype_witness, 
value-type_wf, 
strong-subtype-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  (value-type(T)  {}\mRightarrow{}  strong-subtype(T;bar(T)))
Date html generated:
2016_05_15-PM-10_04_14
Last ObjectModification:
2016_01_05-PM-06_40_49
Theory : bar!type
Home
Index