Nuprl Lemma : strong-subtype-partial
∀[T:Type]. (value-type(T) 
⇒ strong-subtype(T;partial(T)))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
strong-subtype: strong-subtype(A;B)
, 
value-type: value-type(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
inclusion-partial, 
partial_wf, 
exists_wf, 
equal_wf, 
value-type_wf, 
strong-subtype_witness, 
termination, 
value-type-has-value, 
has-value_wf-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
lambdaEquality, 
setEquality, 
cumulativity, 
sqequalRule, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
universeEquality, 
setElimination, 
rename, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  (value-type(T)  {}\mRightarrow{}  strong-subtype(T;partial(T)))
Date html generated:
2016_10_21-AM-09_44_52
Last ObjectModification:
2016_07_12-AM-05_04_43
Theory : partial_1
Home
Index