Nuprl Lemma : strong-subtype-partial

[T:Type]. (value-type(T)  strong-subtype(T;partial(T)))


Proof




Definitions occuring in Statement :  partial: partial(T) strong-subtype: strong-subtype(A;B) value-type: value-type(T) uall: [x:A]. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q strong-subtype: strong-subtype(A;B) uimplies: supposing a cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  inclusion-partial partial_wf exists_wf equal_wf value-type_wf strong-subtype_witness termination value-type-has-value has-value_wf-partial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis independent_pairFormation lambdaEquality setEquality cumulativity sqequalRule applyEquality because_Cache dependent_functionElimination independent_functionElimination universeEquality setElimination rename productElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  (value-type(T)  {}\mRightarrow{}  strong-subtype(T;partial(T)))



Date html generated: 2016_10_21-AM-09_44_52
Last ObjectModification: 2016_07_12-AM-05_04_43

Theory : partial_1


Home Index