Nuprl Lemma : assert_dec2bool

[d:Decision]. uiff(↑dec2bool(d);↑d)


Proof




Definitions occuring in Statement :  dec2bool: dec2bool(d) decision: Decision assert: b uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] assert: b dec2bool: dec2bool(d) ifthenelse: if then else fi  bfalse: ff btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T decision: Decision true: True false: False all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  decision_wf true_wf false_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation introduction cut sqequalHypSubstitution unionElimination thin sqequalRule natural_numberEquality voidElimination hypothesisEquality extract_by_obid hypothesis lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isectElimination dependent_functionElimination independent_functionElimination instantiate because_Cache

Latex:
\mforall{}[d:Decision].  uiff(\muparrow{}dec2bool(d);\muparrow{}d)



Date html generated: 2017_10_01-AM-08_28_34
Last ObjectModification: 2017_07_26-PM-04_23_34

Theory : basic


Home Index