Nuprl Lemma : assert_dec2bool
∀[d:Decision]. uiff(↑dec2bool(d);↑d)
Proof
Definitions occuring in Statement : 
dec2bool: dec2bool(d)
, 
decision: Decision
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
assert: ↑b
, 
dec2bool: dec2bool(d)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
decision: Decision
, 
true: True
, 
false: False
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
decision_wf, 
true_wf, 
false_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
natural_numberEquality, 
voidElimination, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
because_Cache
Latex:
\mforall{}[d:Decision].  uiff(\muparrow{}dec2bool(d);\muparrow{}d)
Date html generated:
2017_10_01-AM-08_28_34
Last ObjectModification:
2017_07_26-PM-04_23_34
Theory : basic
Home
Index