Nuprl Lemma : assert_dec2bool
∀[d:Decision]. uiff(↑dec2bool(d);↑d)
Proof
Definitions occuring in Statement : 
dec2bool: dec2bool(d), 
decision: Decision, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
assert: ↑b, 
dec2bool: dec2bool(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
decision: Decision, 
true: True, 
false: False, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
decision_wf, 
true_wf, 
false_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
sqequalRule, 
natural_numberEquality, 
voidElimination, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
because_Cache
Latex:
\mforall{}[d:Decision].  uiff(\muparrow{}dec2bool(d);\muparrow{}d)
Date html generated:
2017_10_01-AM-08_28_34
Last ObjectModification:
2017_07_26-PM-04_23_34
Theory : basic
Home
Index