Nuprl Lemma : dl-conj_wf
∀[L:Prop List]. (dl-conj(L) ∈ Prop)
Proof
Definitions occuring in Statement : 
dl-conj: dl-conj(L)
, 
dl-prop: Prop
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dl-conj: dl-conj(L)
Lemmas referenced : 
reduce_wf, 
dl-prop_wf, 
dl-and_wf, 
dl-true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality_alt, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L:Prop  List].  (dl-conj(L)  \mmember{}  Prop)
Date html generated:
2019_10_15-AM-11_45_46
Last ObjectModification:
2019_05_06-PM-04_44_19
Theory : dynamic!logic
Home
Index