Nuprl Lemma : dl-valid-box-dist-and2

a:Prog. ∀phi,psi:Prop.  (|= [a] phi ∧ [a] psi  |= [a] phi ∧ psi)


Proof




Definitions occuring in Statement :  dl-valid: |= phi dl-box: [x1] x dl-and: x1 ∧ x dl-prop: Prop dl-prog: Prog all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dl-valid: Error :dl-valid,  dl-sem: Error :dl-sem,  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q cand: c∧ B pi1: fst(t) subtype_rel: A ⊆B prop: guard: {T}
Lemmas referenced :  istype-void istype-atom subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution sqequalRule cut introduction extract_by_obid isectElimination thin isect_memberEquality_alt voidElimination hypothesis dependent_functionElimination hypothesisEquality productElimination independent_pairFormation because_Cache universeIsType applyEquality lambdaEquality_alt inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination instantiate universeEquality functionIsType

Latex:
\mforall{}a:Prog.  \mforall{}phi,psi:Prop.    (|=  [a]  phi  \mwedge{}  [a]  psi  {}\mRightarrow{}  |=  [a]  phi  \mwedge{}  psi)



Date html generated: 2019_10_15-AM-11_45_04
Last ObjectModification: 2019_03_26-AM-11_28_37

Theory : dynamic!logic


Home Index