Nuprl Lemma : dlo_le_wf

[a,b:dl-Obj()].  (a ≤ b ∈ 𝔹)


Proof




Definitions occuring in Statement :  dlo_le: a ≤ b dl-Obj: dl-Obj() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dlo_le: a ≤ b
Lemmas referenced :  dlo-le_wf dl-Obj_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality extract_by_obid hypothesis hypothesisEquality sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectElimination thin isectIsTypeImplies universeIsType

Latex:
\mforall{}[a,b:dl-Obj()].    (a  \mleq{}  b  \mmember{}  \mBbbB{})



Date html generated: 2019_10_15-AM-11_43_17
Last ObjectModification: 2019_04_11-PM-01_56_41

Theory : dynamic!logic


Home Index