Nuprl Lemma : dlo-le_wf

dlo-le() ∈ dl-Obj() ⟶ dl-Obj() ⟶ 𝔹


Proof




Definitions occuring in Statement :  dlo-le: dlo-le() dl-Obj: dl-Obj() bool: 𝔹 member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  dlo-le: dlo-le() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  dl-ind_wf dl-Obj_wf bool_wf subtype-TYPE dlo_eq_wf dl-prog-obj_wf dl-aprog_wf istype-nat bor_wf dl-comp_wf dl-prog_wf dl-choose_wf dl-iterate_wf dl-test_wf dl-prop_wf dl-prop-obj_wf dl-aprop_wf dl-false_wf dl-implies_wf dl-and_wf dl-or_wf dl-box_wf dl-diamond_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt functionEquality hypothesis applyEquality universeIsType dependent_functionElimination hypothesisEquality inhabitedIsType functionIsType

Latex:
dlo-le()  \mmember{}  dl-Obj()  {}\mrightarrow{}  dl-Obj()  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2019_10_15-AM-11_43_13
Last ObjectModification: 2019_04_11-PM-01_53_48

Theory : dynamic!logic


Home Index