Nuprl Lemma : dlo-le_wf
dlo-le() ∈ dl-Obj() ⟶ dl-Obj() ⟶ 𝔹
Proof
Definitions occuring in Statement : 
dlo-le: dlo-le()
, 
dl-Obj: dl-Obj()
, 
bool: 𝔹
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
dlo-le: dlo-le()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
dl-ind_wf, 
dl-Obj_wf, 
bool_wf, 
subtype-TYPE, 
dlo_eq_wf, 
dl-prog-obj_wf, 
dl-aprog_wf, 
istype-nat, 
bor_wf, 
dl-comp_wf, 
dl-prog_wf, 
dl-choose_wf, 
dl-iterate_wf, 
dl-test_wf, 
dl-prop_wf, 
dl-prop-obj_wf, 
dl-aprop_wf, 
dl-false_wf, 
dl-implies_wf, 
dl-and_wf, 
dl-or_wf, 
dl-box_wf, 
dl-diamond_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality_alt, 
functionEquality, 
hypothesis, 
applyEquality, 
universeIsType, 
dependent_functionElimination, 
hypothesisEquality, 
inhabitedIsType, 
functionIsType
Latex:
dlo-le()  \mmember{}  dl-Obj()  {}\mrightarrow{}  dl-Obj()  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2019_10_15-AM-11_43_13
Last ObjectModification:
2019_04_11-PM-01_53_48
Theory : dynamic!logic
Home
Index