Nuprl Lemma : length-in-bar-int-if-co-list

[T:Type]. ∀[t:colist(T)].  (||t|| ∈ partial(ℤ))


Proof




Definitions occuring in Statement :  length: ||as|| colist: colist(T) partial: partial(T) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B uimplies: supposing a nat:
Lemmas referenced :  length-is-colength colist_wf colength_wf subtype_rel_partial nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality because_Cache universeEquality applyEquality intEquality independent_isectElimination lambdaEquality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (||t||  \mmember{}  partial(\mBbbZ{}))



Date html generated: 2016_05_15-PM-10_10_07
Last ObjectModification: 2015_12_27-PM-05_58_55

Theory : eval!all


Home Index