Nuprl Lemma : length-in-bar-int-if-co-list
∀[T:Type]. ∀[t:colist(T)].  (||t|| ∈ partial(ℤ))
Proof
Definitions occuring in Statement : 
length: ||as||
, 
colist: colist(T)
, 
partial: partial(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat: ℕ
Lemmas referenced : 
length-is-colength, 
colist_wf, 
colength_wf, 
subtype_rel_partial, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (||t||  \mmember{}  partial(\mBbbZ{}))
Date html generated:
2016_05_15-PM-10_10_07
Last ObjectModification:
2015_12_27-PM-05_58_55
Theory : eval!all
Home
Index