Nuprl Lemma : member-co-list-islist
∀[T:Type]. ∀[L:colist(T)].  L ∈ co-list-islist(T) supposing (is-list(L))↓
Proof
Definitions occuring in Statement : 
co-list-islist: co-list-islist(T)
, 
is-list: is-list(t)
, 
colist: colist(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
prop: ℙ
, 
co-list-islist: co-list-islist(T)
Lemmas referenced : 
is-list-wf-co-list, 
has-value_wf-partial, 
bool_wf, 
union-value-type, 
unit_wf2, 
colist_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:colist(T)].    L  \mmember{}  co-list-islist(T)  supposing  (is-list(L))\mdownarrow{}
Date html generated:
2019_10_16-AM-11_38_26
Last ObjectModification:
2018_09_26-PM-09_35_02
Theory : eval!all
Home
Index