Nuprl Lemma : is-list-wf-co-list

[T:Type]. ∀[t:colist(T)].  (is-list(t) ∈ partial(𝔹))


Proof




Definitions occuring in Statement :  is-list: is-list(t) colist: colist(T) partial: partial(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-list: is-list(t) uimplies: supposing a bool: 𝔹 top: Top so_lambda: λ2x.t[x] is-list-fun: is-list-fun()
Lemmas referenced :  fixpoint-induction-bottom bool_wf colist_wf partial_wf union-value-type unit_wf2 bool-mono strictness-apply bottom_wf-partial is-list-fun_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality hypothesisEquality independent_isectElimination sqequalRule because_Cache functionExtensionality isect_memberEquality voidElimination voidEquality lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[t:colist(T)].    (is-list(t)  \mmember{}  partial(\mBbbB{}))



Date html generated: 2016_05_15-PM-10_09_57
Last ObjectModification: 2015_12_27-PM-05_59_06

Theory : eval!all


Home Index