Nuprl Lemma : assert-equal-test

[A,B:Type]. ∀[f:A ⟶ B]. ∀[a1,a2:A].  (f a1) (f a2) ∈ supposing a1 a2 ∈ A


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality hypothesisEquality hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[a1,a2:A].    (f  a1)  =  (f  a2)  supposing  a1  =  a2



Date html generated: 2016_05_15-PM-03_21_24
Last ObjectModification: 2015_12_27-PM-01_04_09

Theory : general


Home Index